If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2+4x-3=0
a = 15; b = 4; c = -3;
Δ = b2-4ac
Δ = 42-4·15·(-3)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-14}{2*15}=\frac{-18}{30} =-3/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+14}{2*15}=\frac{10}{30} =1/3 $
| 4(t+2)=2(3t-3) | | 12x+54=-8x-4(-5x-2) | | -4x-97=8x+167 | | 30(d+10)=480 | | 6m+11=12 | | 4(x+3)-7=37 | | -63-14x=145-6x | | 28(k-959)=756 | | 14.73-0.06(x+3)=15.23-0.13 | | 14=k+256/30 | | -74+4x=13x+97 | | 950+4c=9c | | X2=-5x | | 10/3x-36=2x+96 | | 3/4+p=12 | | 17/2=51y/4 | | t-68/6=3 | | -75-4x=-11x+51 | | x-18=9-8x | | 3x+43=x+15 | | (4×5)+4=4+4p | | 950=4c+9 | | d*7=9.1 | | g/3+17=19 | | -38=-x | | 2-20/2b=2b/b+4 | | 3a-12-1a=2-5a | | g/3=17=19 | | 27=k+168/11 | | -5x-96=x+48 | | 7x+15=38= | | j/3+3=7 |