10/3x-36=2x+96

Simple and best practice solution for 10/3x-36=2x+96 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10/3x-36=2x+96 equation:



10/3x-36=2x+96
We move all terms to the left:
10/3x-36-(2x+96)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We get rid of parentheses
10/3x-2x-96-36=0
We multiply all the terms by the denominator
-2x*3x-96*3x-36*3x+10=0
Wy multiply elements
-6x^2-288x-108x+10=0
We add all the numbers together, and all the variables
-6x^2-396x+10=0
a = -6; b = -396; c = +10;
Δ = b2-4ac
Δ = -3962-4·(-6)·10
Δ = 157056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{157056}=\sqrt{64*2454}=\sqrt{64}*\sqrt{2454}=8\sqrt{2454}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-396)-8\sqrt{2454}}{2*-6}=\frac{396-8\sqrt{2454}}{-12} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-396)+8\sqrt{2454}}{2*-6}=\frac{396+8\sqrt{2454}}{-12} $

See similar equations:

| 3/4+p=12 | | 17/2=51y/4 | | t-68/6=3 | | -75-4x=-11x+51 | | x-18=9-8x | | 3x+43=x+15 | | (4×5)+4=4+4p | | 950=4c+9 | | d*7=9.1 | | g/3+17=19 | | -38=-x | | 2-20/2b=2b/b+4 | | 3a-12-1a=2-5a | | g/3=17=19 | | 27=k+168/11 | | -5x-96=x+48 | | 7x+15=38= | | j/3+3=7 | | x^2-(5+1)x+8+1=0 | | -3/7y=42 | | X^2+30x-5000=0 | | 16(16-x)=16 | | 6x-7+5x+16=180 | | 5(x+8)-7x+15(x+2)=3x+274 | | 12(5-x)=0 | | 12p-8=-7 | | 0=16t-1.86t^2 | | -60-7x=84-3x | | x+2=6/7 | | (6.6/3.3)*u=5.2 | | -5a-5=a+79 | | V=1/33.1416h |

Equations solver categories