15/8x-11=7/4x+1

Simple and best practice solution for 15/8x-11=7/4x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 15/8x-11=7/4x+1 equation:



15/8x-11=7/4x+1
We move all terms to the left:
15/8x-11-(7/4x+1)=0
Domain of the equation: 8x!=0
x!=0/8
x!=0
x∈R
Domain of the equation: 4x+1)!=0
x∈R
We get rid of parentheses
15/8x-7/4x-1-11=0
We calculate fractions
60x/32x^2+(-56x)/32x^2-1-11=0
We add all the numbers together, and all the variables
60x/32x^2+(-56x)/32x^2-12=0
We multiply all the terms by the denominator
60x+(-56x)-12*32x^2=0
Wy multiply elements
-384x^2+60x+(-56x)=0
We get rid of parentheses
-384x^2+60x-56x=0
We add all the numbers together, and all the variables
-384x^2+4x=0
a = -384; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·(-384)·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*-384}=\frac{-8}{-768} =1/96 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*-384}=\frac{0}{-768} =0 $

See similar equations:

| 4(w-5)+3=-1 | | 2x-4=x-2+x | | 9+6p-10=-7 | | x/12-2=8 | | 4x-128=48-7x | | -14.8=-3.6+y/7 | | 7x-10=-(12x+25) | | C-10=2c | | 3-10h=20-9h | | 4(a+5)=6 | | 65=x-7(x+1) | | 6x-10=8x+32 | | 2x-5+2x-5+x+x=50 | | 2k=4-2k | | 17-3(w+5)=6(w=5)-2w | | (2r/5)=48 | | 4x+30=14x | | −3+b=−9 | | 2(3x+10)=4(2x-15) | | b/5+3=8 | | x+135=55 | | -58-9x=17-4x | | -24=p+14 | | 4(y-5)=-8y | | -2x-25=-35 | | 400+11p=752 | | 19.67-1.6t=-18.7t-19.69-13.65 | | 5(x-4)+6x-(7x+3)=1 | | x^2+2x+3=87-3x | | b-33=4 | | 24=p+17 | | x2=-11+6x |

Equations solver categories