If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2-17x-6=0
a = 14; b = -17; c = -6;
Δ = b2-4ac
Δ = -172-4·14·(-6)
Δ = 625
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{625}=25$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-25}{2*14}=\frac{-8}{28} =-2/7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+25}{2*14}=\frac{42}{28} =1+1/2 $
| x=60+60+60 | | 100-8x=80-4x | | 13(8)+4y=487 | | 2(a*10)=7(a+5)+4 | | 4.2+u/7=-13.3 | | x^(1/3)+2=7 | | 4(-3x+7)=80 | | z/10+9=1 | | -8x+5=x=6 | | 2y-6=11 | | (2x+1)+(x+10)=x | | Y=2x-1.Y=4x+7 | | (8x-5)+(10x+5)=90 | | (12y+8)+(5y+2)=90 | | 75-5x=60 | | x/(1/6)*x=25 | | 8x^2-5=67 | | 12y+8+5y+2=90 | | 2x−5=76−7x | | x-2(3x)=x+4(x-1) | | s5-32=33 | | -46c=23 | | Y+5x=9;x=-1,0,3 | | -9=-9(x+4 | | 99-7x=9x+3 | | 7-11h=-43-6h | | x+3/(2=5 | | x+3(/2=5 | | x=48+96 | | 5-6x=-5+1 | | x+(9+1/2.5094339622642)=25 | | 24*2x=0 |