If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1400=1250(1+(x)(2))
We move all terms to the left:
1400-(1250(1+(x)(2)))=0
We add all the numbers together, and all the variables
-(1250(+x^2+1))+1400=0
We calculate terms in parentheses: -(1250(+x^2+1)), so:We get rid of parentheses
1250(+x^2+1)
We multiply parentheses
1250x^2+1250
Back to the equation:
-(1250x^2+1250)
-1250x^2-1250+1400=0
We add all the numbers together, and all the variables
-1250x^2+150=0
a = -1250; b = 0; c = +150;
Δ = b2-4ac
Δ = 02-4·(-1250)·150
Δ = 750000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{750000}=\sqrt{250000*3}=\sqrt{250000}*\sqrt{3}=500\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-500\sqrt{3}}{2*-1250}=\frac{0-500\sqrt{3}}{-2500} =-\frac{500\sqrt{3}}{-2500} =-\frac{\sqrt{3}}{-5} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+500\sqrt{3}}{2*-1250}=\frac{0+500\sqrt{3}}{-2500} =\frac{500\sqrt{3}}{-2500} =\frac{\sqrt{3}}{-5} $
| 7(x)=(1)7 | | 1600=1/2a10^ | | 4/3x-4=4/6x+2/3x-1/2 | | 14=6+0.2n | | 4x-9=-7=13 | | 2x=11-5-2x | | X+.05x=105 | | 2x+1-4=(2x+3) | | x+7÷9=-1 | | 1600=1/2a10 | | 5+1-2n=6 | | 20/x^2-4x+7=x-2 | | 2x(2-3x)(3-x)=0 | | y=1/3-6-2 | | -3(2v-3)+7v=5(v+3) | | 0.5x+9+x=39 | | 7x-1=1+7x | | (x)/(4)-4=-12 | | 2x+x+5=2x+1 | | 6(y+5)=-24 | | 2(u-4)=4u+1-2(-2u-3) | | 30=2/5x | | 1=4x-(x+5)+6 | | 4n+6=1/6 | | 3/2w=3/8 | | 7/10x=1 | | 18/12=x/1 | | Y-4+3(3y+2)=-2(y+6) | | 198-v=259 | | 3h+6=30 | | p/55=-7.35 | | (0.375×x)/10=6.075 |