14/2x+4=27/5x+2

Simple and best practice solution for 14/2x+4=27/5x+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 14/2x+4=27/5x+2 equation:



14/2x+4=27/5x+2
We move all terms to the left:
14/2x+4-(27/5x+2)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 5x+2)!=0
x∈R
We get rid of parentheses
14/2x-27/5x-2+4=0
We calculate fractions
70x/10x^2+(-54x)/10x^2-2+4=0
We add all the numbers together, and all the variables
70x/10x^2+(-54x)/10x^2+2=0
We multiply all the terms by the denominator
70x+(-54x)+2*10x^2=0
Wy multiply elements
20x^2+70x+(-54x)=0
We get rid of parentheses
20x^2+70x-54x=0
We add all the numbers together, and all the variables
20x^2+16x=0
a = 20; b = 16; c = 0;
Δ = b2-4ac
Δ = 162-4·20·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{256}=16$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16}{2*20}=\frac{-32}{40} =-4/5 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16}{2*20}=\frac{0}{40} =0 $

See similar equations:

| (X+3)×12=18+c | | (2x-6)^2-144=0 | | 2w²—11w+15=55 | | x^2+8x+20=13 | | -4=5(p+2) | | -4=5(p+2 | | 4x2-25x-4=0 | | x=(912,8*456^(1/3))/(8,1)^4 | | 15x2-17x-4=0 | | 5.8d-7.5=4.3d | | 10x+11-x=5x-13 | | k-3k=6k-8k+5 | | 5=2x/6 | | N²+3n-84=0 | | 4(2x+1)=3x-1 | | 2y-6=3y+7 | | 17k;k=5 | | (2x-9)=27 | | 100=10.5*(0.25+x(1-x))/(0.5-x)/(0.5-x) | | (k+1/2)(2)=4/16 | | 0.25+x(1-x)=10*(0.5-x)*(0.5-x) | | 0.25+x(1-x)=10*(0.5-x)^2 | | 3y÷4=24 | | 1-9(u+1)=7u | | 0.25+x(1-x)=10.5*(0.5-x) | | 4t=32. | | 5n-7(2n-3n)=12 | | 2^(x+3)=2^(1-x)+15 | | 9m-2(m+8)=5 | | 3xx=30,000 | | 3x•4=9•4 | | 0,7+2x=3x+1,7 |

Equations solver categories