If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14(2)+b(2)=15(2)
We move all terms to the left:
14(2)+b(2)-(15(2))=0
determiningTheFunctionDomain b2+142-152=0
We add all the numbers together, and all the variables
b^2-10=0
a = 1; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·1·(-10)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{10}}{2*1}=\frac{0-2\sqrt{10}}{2} =-\frac{2\sqrt{10}}{2} =-\sqrt{10} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{10}}{2*1}=\frac{0+2\sqrt{10}}{2} =\frac{2\sqrt{10}}{2} =\sqrt{10} $
| 5/6x=2/9 | | 6/5k-1/4=3+7/6k | | 3=g-58/9 | | 3(5-0.4y)+y=14 | | 4x^2+11x+15=0 | | 16=10+2f | | 2x+18=24-x | | 5-(-1m)=1 | | 5-(-1m=1 | | z+9/10=4 | | (5+d)/(-2)=14 | | 3(6x-10)-12x=-20+6x-10 | | 17x-13x+x+x+2x=16 | | 2/3x+1/2=5/12x | | 2=w/4-1 | | 1/2(4x-6)=6(1/3x-1/2)+9 | | 2.6x-3.5=14.7 | | (3/10)x-2x+(4/5)=3/5 | | 3x-7+6x+8=3x+6x-2 | | 5x^2-37x=-42 | | 7.8m-7-13.9m=9.1-6.1m-16.1 | | 2=g/3-2 | | 16y-7=4 | | 0=-16t+256 | | -2x+7(3x-7)=-24-6x | | 6(x2-2)+1-16+x= | | 4(y+5)=5(y-7) | | 10x-9-9=14x-9+5x= | | 5/3(4x−5)=4x−13 | | 5r/3+4/3=8/9 | | q=20-(.5P) | | 3h=2-17 |