If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13x^2+5x+85=95
We move all terms to the left:
13x^2+5x+85-(95)=0
We add all the numbers together, and all the variables
13x^2+5x-10=0
a = 13; b = 5; c = -10;
Δ = b2-4ac
Δ = 52-4·13·(-10)
Δ = 545
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{545}}{2*13}=\frac{-5-\sqrt{545}}{26} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{545}}{2*13}=\frac{-5+\sqrt{545}}{26} $
| 5x-30+3x+6=180 | | k+45=84 | | -3+2(-8x+1)=-129 | | −7+11p=3p−47 | | 15k−6=35k+2 | | 4f=53 | | 17+x+23=90 | | –2+2q=2+4q | | 3x+5=1/3(2x+7) | | 7x+47=112 | | (5x^2-2)=64 | | (25x-5)+12x=180 | | 15x=498+581 | | 1/10(x+50)=-3x+4x | | 2b=–12 | | 9=1/3y | | t-48=45 | | 91=2x+3 | | (2)x+26=264 | | X+5=x+15=3x+10 | | 9=r/5=15 | | X+9+4x-6+2x+9=180 | | 40x(x-2)=6x-8 | | (x+4)/(2)-3=13 | | –10−2c+8=10−4c | | -6(3+7x)-7x=325 | | c=$25+$9 | | 23+2y=49 | | -z/4=-6 | | 9d-8=-170 | | 87-5=3y+10 | | -z/4=-06 |