If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40x(x-2)=6x-8
We move all terms to the left:
40x(x-2)-(6x-8)=0
We multiply parentheses
40x^2-80x-(6x-8)=0
We get rid of parentheses
40x^2-80x-6x+8=0
We add all the numbers together, and all the variables
40x^2-86x+8=0
a = 40; b = -86; c = +8;
Δ = b2-4ac
Δ = -862-4·40·8
Δ = 6116
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6116}=\sqrt{4*1529}=\sqrt{4}*\sqrt{1529}=2\sqrt{1529}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-86)-2\sqrt{1529}}{2*40}=\frac{86-2\sqrt{1529}}{80} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-86)+2\sqrt{1529}}{2*40}=\frac{86+2\sqrt{1529}}{80} $
| (x+4)/(2)-3=13 | | –10−2c+8=10−4c | | -6(3+7x)-7x=325 | | c=$25+$9 | | 23+2y=49 | | -z/4=-6 | | 9d-8=-170 | | 87-5=3y+10 | | -z/4=-06 | | 2x+3x+10+x-4=180 | | -5x-12+3x=32 | | 1032=6(x+18) | | n+1+3=45 | | 55+5x+4x+10=180 | | -4/5a=16 | | 1032=6(x=18) | | 6x-93=5x+49 | | -93=-6+3(1-5x) | | 25^x+1=625/5x | | -6c-4=50 | | 5/4(a-8)=2/8 | | -24=5+y | | -7-3d=-3d-5 | | 4x+16+32=180 | | 2x-23+3x-12=180 | | 8=5(u-2)-7u | | 2x+5=5x+65 | | 4(11x+20)=548 | | 3x-5=8x-7-6x | | 18=3x6 | | 3x^2+4x=132 | | -7=a-19 |