If it's not what You are looking for type in the equation solver your own equation and let us solve it.
13x(10x+21)=180
We move all terms to the left:
13x(10x+21)-(180)=0
We multiply parentheses
130x^2+273x-180=0
a = 130; b = 273; c = -180;
Δ = b2-4ac
Δ = 2732-4·130·(-180)
Δ = 168129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{168129}=\sqrt{9*18681}=\sqrt{9}*\sqrt{18681}=3\sqrt{18681}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(273)-3\sqrt{18681}}{2*130}=\frac{-273-3\sqrt{18681}}{260} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(273)+3\sqrt{18681}}{2*130}=\frac{-273+3\sqrt{18681}}{260} $
| 5(6x-8)=340 | | (n*4)+2=5(n*6+10 | | (n+4)+2=5(n*6+10 | | 8^x3-4x-3=1 | | 12x+13=135 | | 50+5p=60. | | 100=7.50x+0.40x | | 5x^2-45x-3=0 | | 17/11=u/8 | | x-10+2x=x | | 100=7.50x+04.40x | | 5x=-3+3 | | .25(8x-20)=4x=31 | | 12w-10w+3=17 | | -3/7*w=9 | | 28-2x=7x-3 | | 3x-40+5=25 | | 4x+-3=1+8 | | 39=-6x+3 | | 20v+-10v=-10 | | 4x-6/14=5 | | -76=3x+19-8x | | -1x+-4=4+1 | | 4x-14-3x=6 | | 7-14m=-2m-5 | | 4x=7x-6-7-7 | | (x+1)(2x+1)=(x+3)(2x+3)+-14 | | 1.5+2x=10 | | 3n2-53n+232=0 | | -20m—19–5m=20 | | 16z-4=3z+6-z | | -5u+1=-6u+10 |