If it's not what You are looking for type in the equation solver your own equation and let us solve it.
121x^2=64
We move all terms to the left:
121x^2-(64)=0
a = 121; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·121·(-64)
Δ = 30976
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{30976}=176$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-176}{2*121}=\frac{-176}{242} =-8/11 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+176}{2*121}=\frac{176}{242} =8/11 $
| 6a-4=1 | | x×3=840 | | 4a+9=39 | | -20=5(5x+1) | | -3x-18=3x-78 | | 3x-5=x+10=95 | | 39=3(4x-3) | | -2x+18=-6x+22 | | 8x-143=2x-11 | | 5(4x-15)=25 | | (7/x-4)+(8/3x-12)=6 | | 6x+11=49-6x | | 5x+3=15x+5 | | 12=3(d-5) | | 10+8y-8y=6 | | m+10=3m-4 | | 7(9-m)=7 | | 5x=10 +4x | | 10p+4=3p-3 | | 3(2x-1)-(4+3)=3(3x+5) | | x+2/3(5-x)=2x | | (5x-5)=(4x+10) | | 2,5^x=50 | | m-8=3m+12 | | 5(x−2)=2x−13 | | 159x-527=15-21x | | (2x+5)=4-(3+x) | | 5x/10+3/2=2x-15 | | a+¼=⅝ | | 2(x−1)=1+x2 | | 8x=3x−25 | | -15x+20=29+8x |