If it's not what You are looking for type in the equation solver your own equation and let us solve it.
121x^2=12136
We move all terms to the left:
121x^2-(12136)=0
a = 121; b = 0; c = -12136;
Δ = b2-4ac
Δ = 02-4·121·(-12136)
Δ = 5873824
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5873824}=\sqrt{1936*3034}=\sqrt{1936}*\sqrt{3034}=44\sqrt{3034}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-44\sqrt{3034}}{2*121}=\frac{0-44\sqrt{3034}}{242} =-\frac{44\sqrt{3034}}{242} =-\frac{2\sqrt{3034}}{11} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+44\sqrt{3034}}{2*121}=\frac{0+44\sqrt{3034}}{242} =\frac{44\sqrt{3034}}{242} =\frac{2\sqrt{3034}}{11} $
| 3m+7=16=6m+15 | | Y=20x+2.5 | | 6x+5=6+6x | | 20,000=12,000(1+.08)t | | -6/h-12=-18 | | 7(2m-1)-3/5m=6/5(4-3m)= | | -2x-1+4x=3x+3 | | 2t+4=t+10 | | 10x-15=5(x+9) | | 811=r−–538 | | -2(n+6)=6 | | 261=100-y | | 811=r-538 | | 3x+10=1/2(12x+8) | | d÷2=101 | | 5+2(2m-8=25 | | 75+45x=50x | | -x/2.8=4.5 | | 261=100-x | | 28=-2(x-8)+24 | | 2/3(9)^x=162 | | x-4+3x=4x(x+1)-2 | | 14x+5=12.5x+20 | | 3x−7= 7x+13 | | r-344=352 | | -x/2.8=-4.5 | | z/4+6=-32 | | a+2a+4=10 | | 6=21z | | 0.6x+2.7=0.9 | | -165-11x+5x=51 | | –3s−10=s+6 |