If it's not what You are looking for type in the equation solver your own equation and let us solve it.
121=25x^2
We move all terms to the left:
121-(25x^2)=0
a = -25; b = 0; c = +121;
Δ = b2-4ac
Δ = 02-4·(-25)·121
Δ = 12100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{12100}=110$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-110}{2*-25}=\frac{-110}{-50} =2+1/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+110}{2*-25}=\frac{110}{-50} =-2+1/5 $
| 9x+4=4x+19 | | 27=p2/12 | | -2(38-7)+4u=4+2(4u-1) | | 5n2=245 | | 4c-2(c+2)=11-(2c-5) | | 5/2(x-3/2)-(-4/35)=0 | | 12y-10y-6=30.08. | | 27=x/6 | | 12y-10y-6=30.08 | | 5/2(x-3/2)=-4/35 | | 5/2(x-3/2)=-35/4 | | 2y-1=-5÷3 | | 14y-10y-13=61.48. | | -5c-11-5c=8 | | 8(x+7)=x(6-4) | | 3x+9x+6=20-(-3x)+4x | | 7·10^x=5 | | 1/10y-3=-16 | | 3/10x+12=4/10x-28 | | X3+6x+20=0 | | -36=40+4x | | 3=16+n/44 | | 2x+40=6 | | y/8+6=-9 | | 2x+3(x-1)=5x+6 | | 10x+17=24 | | w/4+1=5 | | 2x-5(x-4)=-9+3x+5 | | 53=8+12/z | | 43=7u+1 | | 7+1.25(x)=43.25 | | 11x+5=39 |