12.3(6x+10)=7(3/7x-2)

Simple and best practice solution for 12.3(6x+10)=7(3/7x-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 12.3(6x+10)=7(3/7x-2) equation:



12.3(6x+10)=7(3/7x-2)
We move all terms to the left:
12.3(6x+10)-(7(3/7x-2))=0
Domain of the equation: 7x-2))!=0
x∈R
We multiply parentheses
73.8x-(7(3/7x-2))+123=0
We multiply all the terms by the denominator
(73.8x)*7x+123*7x-2))-(7(3-2))=0
We add all the numbers together, and all the variables
(+73.8x)*7x+123*7x-2))-(71)=0
We add all the numbers together, and all the variables
(+73.8x)*7x+123*7x=0
We multiply parentheses
511x^2+123*7x=0
Wy multiply elements
511x^2+861x=0
a = 511; b = 861; c = 0;
Δ = b2-4ac
Δ = 8612-4·511·0
Δ = 741321
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{741321}=861$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(861)-861}{2*511}=\frac{-1722}{1022} =-1+50/73 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(861)+861}{2*511}=\frac{0}{1022} =0 $

See similar equations:

| 3p^2–14p+8=0 | | x-037x=12.50 | | b+(b+45)+90+(2b+90)+3/4b=540 | | x-037x=$12.50 | | 135​ =t−136 | | 2(x+1)=-6x+2 | | 5x+2(11.5-4x)=8.5+x | | -r+9=-1−2r | | -6v/5=42 | | 8d-6d-11=30 | | -4y=-8/5 | | -88=8(k-7)-8 | | 12x-2=8x-4+4x+2 | | 2(x+3)=-4(-x-2)+1 | | (x+6)(x-4)=24 | | -4d+-16=16 | | 10x=-2x+36 | | 6u+18=-4-8+6u | | 3/4u=-12 | | 4x+6(4x-10)=108 | | -1=-(m-68) | | -1=-(m-68 | | (-3+5x)=-58 | | 92x=70 | | 8x-4=2(3x+6) | | -8(-12-12x)=12(11x-1 | | -(5-5x)-9=7x-28 | | 9(j-81)=45 | | 1/2(8x-10)=2x-11 | | 18=-x+4 | | -2x-14=10-6x | | 39-12w=716w |

Equations solver categories