If it's not what You are looking for type in the equation solver your own equation and let us solve it.
11y^2-19y-10=4y^2
We move all terms to the left:
11y^2-19y-10-(4y^2)=0
determiningTheFunctionDomain 11y^2-4y^2-19y-10=0
We add all the numbers together, and all the variables
7y^2-19y-10=0
a = 7; b = -19; c = -10;
Δ = b2-4ac
Δ = -192-4·7·(-10)
Δ = 641
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{641}}{2*7}=\frac{19-\sqrt{641}}{14} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{641}}{2*7}=\frac{19+\sqrt{641}}{14} $
| -3(y-3)+5=35 | | 6(y-3)=15 | | 11x+9=-5x+17 | | 4t+5t=90 | | X×x+2x=0 | | 1/2x+x²=150 | | -7x+2x-12=9x+1 | | 64-7k=4k+20 | | 9(k+40)=-63 | | 6x-10=-17x+19 | | 14+4j=78 | | 3(a-6)=2a+a-18 | | 12+8y=36 | | -8=12-4v | | 9a-2/7=10 | | 9(d+3=4d) | | 37=15x-5+5x-12 | | 6(d+84)=-18 | | 155-8c=11 | | k+75/4=6 | | (x-12)2.7-2.4x=39 | | 4h+28=76 | | g+4/9=g-3/8 | | h+28/5=8 | | -6(b-75)=-72 | | 2x2-20x+100=8 | | 6k+2=12 | | x=19938704844+26759/36360 | | 3(f+12)=63 | | x=4349827848927594/(4848*45)=x+5 | | x-1/6+x+7/5=7/6 | | 8(f+3)=7(f-6) |