110x+30(x/2)+80x(/4)=26100

Simple and best practice solution for 110x+30(x/2)+80x(/4)=26100 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 110x+30(x/2)+80x(/4)=26100 equation:



110x+30(x/2)+80x(/4)=26100
We move all terms to the left:
110x+30(x/2)+80x(/4)-(26100)=0
We add all the numbers together, and all the variables
110x+30(+x/2)+80x(+/4)-26100=0
We multiply parentheses
80x^2+110x+30x-26100=0
We add all the numbers together, and all the variables
80x^2+140x-26100=0
a = 80; b = 140; c = -26100;
Δ = b2-4ac
Δ = 1402-4·80·(-26100)
Δ = 8371600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8371600}=\sqrt{400*20929}=\sqrt{400}*\sqrt{20929}=20\sqrt{20929}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(140)-20\sqrt{20929}}{2*80}=\frac{-140-20\sqrt{20929}}{160} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(140)+20\sqrt{20929}}{2*80}=\frac{-140+20\sqrt{20929}}{160} $

See similar equations:

| x2-25x+24=0 | | 100r/4=1625/4 | | 5z/3=4 | | -12+21s/3=-53 | | -305c-42=-31 | | 1/2x+1/4=-5(2/3x-1) | | 265/n-9=16 | | -13=2d/4 | | 8=11f/176 | | 4y+5=13,y=? | | X+37x=180 | | 21n+16=184 | | -305c-42=-31=8c | | -305c-42=(-31)=8c | | 4t-13t+32=6t | | u+15/u=-8 | | -4y+5-3y=-11+9y | | x+(x-29)+(x-41)=6113 | | 4(v-4)=8v | | 4+2(x+3)=48 | | 1.2^x=1.44^x | | x/2-x/3=5/2 | | x+3.2*x=84 | | X-2(x+5)=2 | | 7w+5=8w+3 | | 10x-12x-25=360 | | 10x-12x-25=180 | | 5x+12=3x+5 | | 10x+12x-25=360 | | -(w-8)=10 | | 5(7-2x)+25=0 | | 7•9^x=55.68 |

Equations solver categories