11/18+1/6a=1/3a

Simple and best practice solution for 11/18+1/6a=1/3a equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 11/18+1/6a=1/3a equation:



11/18+1/6a=1/3a
We move all terms to the left:
11/18+1/6a-(1/3a)=0
Domain of the equation: 6a!=0
a!=0/6
a!=0
a∈R
Domain of the equation: 3a)!=0
a!=0/1
a!=0
a∈R
We add all the numbers together, and all the variables
1/6a-(+1/3a)+11/18=0
We get rid of parentheses
1/6a-1/3a+11/18=0
We calculate fractions
594a^2/324a^2+54a/324a^2+(-108a)/324a^2=0
We multiply all the terms by the denominator
594a^2+54a+(-108a)=0
We get rid of parentheses
594a^2+54a-108a=0
We add all the numbers together, and all the variables
594a^2-54a=0
a = 594; b = -54; c = 0;
Δ = b2-4ac
Δ = -542-4·594·0
Δ = 2916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{2916}=54$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-54)-54}{2*594}=\frac{0}{1188} =0 $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-54)+54}{2*594}=\frac{108}{1188} =1/11 $

See similar equations:

| s=180(16-2) | | 8/21=x/3 | | x-52.36/x=0.23 | | 36000=((x)-(.1)(x)) | | 1=-n/3-1 | | 25000=((x)-(.2)(x)) | | (6+2x^)=-8 | | 2x/7x=1/3 | | 2+x/7+x=1/3 | | 0.0001=10^2x | | (10+5x)/2=25 | | 168=105-x | | (2/3)=60/(x^2)-10 | | (2/5)=x/10^2 | | (2/3)=20/x | | -15=4x-8x+30x | | 75x^2+200x=10000 | | 10=50/x | | 75x+200x=10000 | | -15+-30x=4x-8x | | 10=1/5(5k+15) | | 10-x√x=2 | | 18+24k=6 | | 2/3(5x+6=34 | | 17x=7x+38 | | 4x^2+x-100=0 | | -3.5+2p=11.5 | | 53+7x=13x-1 | | 24=3n-5; | | (2)2)2)2)2)2)2)2)=a | | m/3+-3=-8 | | 95=-8x |

Equations solver categories