If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10y^2=2
We move all terms to the left:
10y^2-(2)=0
a = 10; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·10·(-2)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*10}=\frac{0-4\sqrt{5}}{20} =-\frac{4\sqrt{5}}{20} =-\frac{\sqrt{5}}{5} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*10}=\frac{0+4\sqrt{5}}{20} =\frac{4\sqrt{5}}{20} =\frac{\sqrt{5}}{5} $
| 2x²-12=12x | | X^2+9X=48-4x | | 2(3x+5)=-45+31 | | 120/x=60/17 | | 10x+5=7×-7 | | 4=7z+(-8)+5z | | Y=5y+5 | | 4(u+8)=-2(7u-9)+2u | | 11x-18=10x+7 | | 2(x+3)+5(x-2)=5x+6 | | (2v-9)(2-v)=0 | | 33÷3.14=a | | h(18)=68 | | (k-9)(k+5)=0 | | 4x+4x=10x | | | | -5(-4w+4)-3w=3(w-5)-7 | | 6.7g+8=2.7g+28 | | 5(2x+4)+3(6x-10)=2(5x+13) | | 5(u+4)=-2(8u-1)+9u | | 8*(5n+1)=0.5 | | 20-8x=30-13x | | -2x-2=6x+36 | | p−3≤=3 | | 5.87x-3.11-2=10.12 | | -2x-2=6x+6 | | -4+10u=3u+9 | | 1/4x+16=x-4 | | 6u+14=-12-(-8u | | 12w+2=-7w+17 | | 5u+9=-7(u-3) | | 3(4x+3)–2=12x+7 |