If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(k-9)(k+5)=0
We multiply parentheses ..
(+k^2+5k-9k-45)=0
We get rid of parentheses
k^2+5k-9k-45=0
We add all the numbers together, and all the variables
k^2-4k-45=0
a = 1; b = -4; c = -45;
Δ = b2-4ac
Δ = -42-4·1·(-45)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-14}{2*1}=\frac{-10}{2} =-5 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+14}{2*1}=\frac{18}{2} =9 $
| 4x+4x=10x | | | | -5(-4w+4)-3w=3(w-5)-7 | | 6.7g+8=2.7g+28 | | 5(2x+4)+3(6x-10)=2(5x+13) | | 5(u+4)=-2(8u-1)+9u | | 8*(5n+1)=0.5 | | 20-8x=30-13x | | -2x-2=6x+36 | | p−3≤=3 | | 5.87x-3.11-2=10.12 | | -2x-2=6x+6 | | -4+10u=3u+9 | | 1/4x+16=x-4 | | 6u+14=-12-(-8u | | 12w+2=-7w+17 | | 5u+9=-7(u-3) | | 3(4x+3)–2=12x+7 | | -2(x+1)=x=3x-2 | | 3v-2+4v=5(v+5) | | 2/11h+3=2h-7 | | 5.4x+2.3-2.1x=4.8-3 | | H(t)=147t-4.9t^2 | | –7n=5−6n | | J2+10j-3=0 | | –u=–5u+8 | | 20d=4/5 | | 7=m÷21 | | 2y+6=8y+2y-16 | | -6(u-7)=-3u+27 | | 5x²-4=11 | | 24-9t=10+t |