If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10y^2+-8y+-11=0
We add all the numbers together, and all the variables
10y^2-8y=0
a = 10; b = -8; c = 0;
Δ = b2-4ac
Δ = -82-4·10·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8}{2*10}=\frac{0}{20} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8}{2*10}=\frac{16}{20} =4/5 $
| 40x+2=x | | 9m+24=8m+60 | | 34/7m=81/3 | | 4=|7/3t+5/3|+2 | | 4y-14=3y+6 | | 3/10x=3x-18 | | 7x+13=-1+4(6x-5) | | 2(x+4)+2x=54 | | c=3.14(13) | | -6w+8=-3w-19 | | -2=-4(-4y+1)+5(8+2y) | | x/2+9=22 | | X=2+0.5(x-2) | | n+78=40(n) | | n/8=5/10 | | 2xx-3=6x-3+4 | | -551=19m | | 2c+13=-5 | | x^2+4x+1=0 | | 4=14+5g | | -15g-(-19g)=16 | | 36=28+n | | n+-238=135 | | 3/4m+2=2m+5 | | 40-5x+5x-10=10+5x-10 | | 3x(x-4)=2x+6 | | 180=115(5x-10) | | -10g+18g+-20g+17g-11g=-18 | | 1/2(x-7)=48 | | 12/11=12/p | | 6/n=24/28 | | a÷6+1=9 |