If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-7=0
a = 10; b = 0; c = -7;
Δ = b2-4ac
Δ = 02-4·10·(-7)
Δ = 280
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{280}=\sqrt{4*70}=\sqrt{4}*\sqrt{70}=2\sqrt{70}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{70}}{2*10}=\frac{0-2\sqrt{70}}{20} =-\frac{2\sqrt{70}}{20} =-\frac{\sqrt{70}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{70}}{2*10}=\frac{0+2\sqrt{70}}{20} =\frac{2\sqrt{70}}{20} =\frac{\sqrt{70}}{10} $
| 8(10-4y)+4y=248 | | 6^x+3=216 | | -4(1+2v)+5v=-v-20 | | 16=2(x-4)-5x | | 4x+1=2x–17 | | x^2+42x-112=0 | | 2/j+7=12 | | 22/4=8/x | | -4(z-9)=-3z-3 | | 9+2x=3x–4 | | -24+3x=-3(x+8)-8x | | -2.28x-3.5=10.8 | | -11y-2=5y^2 | | 1/4x/1/8=51/2 | | 4b+35=7(b-2)+4b | | 33-2y=51 | | 4(y+5)-8y=-16 | | f/5+40=36 | | 5x+3(2x-7)=14 | | 6x2+24x=0 | | -10+3.4x=15.2 | | 7(s-88)=28 | | 7n+3(-1+7n)=30-5n | | 1/4x-1/8=51/2 | | 2x+8=3x-4,x | | 23-3w=14 | | 6(v-2)-8v=2 | | 2/7=4/m+3 | | 1,5x^2-0,5x=0 | | -30-7v=5(7v-6) | | 6m-17=7 | | 12=-3x-12-5x |