If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-19x-48=0
a = 10; b = -19; c = -48;
Δ = b2-4ac
Δ = -192-4·10·(-48)
Δ = 2281
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-\sqrt{2281}}{2*10}=\frac{19-\sqrt{2281}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+\sqrt{2281}}{2*10}=\frac{19+\sqrt{2281}}{20} $
| -6+d5=-2 | | 16u-9u=35 | | ⎪c-5⎥=7 | | 10.25x=15662 | | -6x=-18. | | 2x+9=112x+9=112x+9=112x+9=112x+9=11 | | 7y+6=41y+2 | | (3x-2)/4+x=(2/3)-(2x+3)/4 | | 7y+6=24y+2 | | (3x-2)/4+x=2/3-(2x+3)/4 | | X^2-4x=-1/2 | | 3(b+4)=-2b-3 | | 1=1y+1 | | (k/3)-11=16 | | 40=1/4y+6 | | (3t^2)+4=0 | | 11x=15=5x-9 | | 3t^2+4=0 | | 2n-24=15n-129 | | 6(d+3)=48 | | 10*3^y=160 | | 7m-3=5m+7 | | 35000(x)^3=21494 | | X+90+2x+21=180 | | 20=8w | | 20y-5=10y+15 | | 6x2-15x+6=0 | | 1.10x(6/2)= | | 35000*(x)(x)(x)=21494 | | y=0.16+0.7 | | 2(5^5x)=3-5^x | | 27n=15 |