If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x(15x+30)=90
We move all terms to the left:
10x(15x+30)-(90)=0
We multiply parentheses
150x^2+300x-90=0
a = 150; b = 300; c = -90;
Δ = b2-4ac
Δ = 3002-4·150·(-90)
Δ = 144000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{144000}=\sqrt{14400*10}=\sqrt{14400}*\sqrt{10}=120\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(300)-120\sqrt{10}}{2*150}=\frac{-300-120\sqrt{10}}{300} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(300)+120\sqrt{10}}{2*150}=\frac{-300+120\sqrt{10}}{300} $
| 4x-20=9x+2 | | 9u+6u-5=19 | | 21x-2=103 | | (25x+30)=90 | | 1/2(6+2x)=11/3 | | (15x+30)=90 | | (3(24)+18=10x | | 6y-9+2y-5=+8y+17+4y | | 14x-4=8+12x | | 5x+2(4x-7)=7x+22 | | |3m+3|=15. | | x²+6x=160 | | -36-3n=9+7n | | 138+x=50 | | -9-6v=7v+4 | | 1/2(8x-4)+7=6x+11+8 | | 3y-1-5=0 | | 2z+12=6z-1 | | 3y+3=18+y | | 2z+12=6z | | 3n-2=-25 | | 5w+9=4w+34 | | 35.6x0.4= | | 9y+10=7y-4 | | 6y-9/2y-5=8y+17+4y | | 7y-52=52+3y | | 8^(x+1)=60 | | 3x/4+2/7=5/7 | | 7y-20=2y-20 | | 3x/4+2/7=6/7 | | 9x+10=2x+6 | | .8x+3=3 |