6y-9/2y-5=8y+17+4y

Simple and best practice solution for 6y-9/2y-5=8y+17+4y equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6y-9/2y-5=8y+17+4y equation:



6y-9/2y-5=8y+17+4y
We move all terms to the left:
6y-9/2y-5-(8y+17+4y)=0
Domain of the equation: 2y!=0
y!=0/2
y!=0
y∈R
We add all the numbers together, and all the variables
6y-9/2y-(12y+17)-5=0
We get rid of parentheses
6y-9/2y-12y-17-5=0
We multiply all the terms by the denominator
6y*2y-12y*2y-17*2y-5*2y-9=0
Wy multiply elements
12y^2-24y^2-34y-10y-9=0
We add all the numbers together, and all the variables
-12y^2-44y-9=0
a = -12; b = -44; c = -9;
Δ = b2-4ac
Δ = -442-4·(-12)·(-9)
Δ = 1504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1504}=\sqrt{16*94}=\sqrt{16}*\sqrt{94}=4\sqrt{94}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-44)-4\sqrt{94}}{2*-12}=\frac{44-4\sqrt{94}}{-24} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-44)+4\sqrt{94}}{2*-12}=\frac{44+4\sqrt{94}}{-24} $

See similar equations:

| 7y-52=52+3y | | 8^(x+1)=60 | | 3x/4+2/7=5/7 | | 7y-20=2y-20 | | 3x/4+2/7=6/7 | | 9x+10=2x+6 | | .8x+3=3 | | x−7)−(2x+9)=−13 | | 14x-5x=x+72 | | f(7)=3(7)-9 | | (3x-34)=(7x-115) | | 14.4-5x=0.65 | | 16^2x=8^x-1 | | 5p-7=8p+2 | | 9w+36=5(w+4) | | (9+10)45=x | | 10x-4.5-3x=12x-1.1 | | 8m-24=9-3m | | 6-5x+12=6 | | 3w-9*w=5670 | | 3w-9*w=670 | | (x+10)/2=7(x+1) | | 5a-10=9a-6 | | 2+1/4b=18 | | -45=9(y-3) | | (4x+10)=(5x-5) | | 126+2y=180 | | 7x+3-8x+12=-6 | | 62+58+z=180 | | $x+20=90$ | | 3y+2y=1 | | 5+(8x)/7=29 |

Equations solver categories