If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10u(u=9)
We move all terms to the left:
10u(u-(9))=0
We multiply parentheses
10u^2-90u=0
a = 10; b = -90; c = 0;
Δ = b2-4ac
Δ = -902-4·10·0
Δ = 8100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{8100}=90$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-90)-90}{2*10}=\frac{0}{20} =0 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-90)+90}{2*10}=\frac{180}{20} =9 $
| 2j-4=8 | | 2s=-6s | | 4(p-2)=10-2p | | -3+4x+1=-9x+2 | | -6x-7=10x+19 | | r/4-18=28 | | 14=g/3+12 | | -5=-3d+-8 | | 4a+-3a+4+1=9 | | 7x+95+8=-3 | | 15=8-9m | | 14=5(x+4) | | 13=15-2u | | 2m+(-9)=12 | | v/3-3=5 | | 16=4m+10 | | (7/(m+9))=m+10 | | Y4-y-6=0 | | s/3-2=3 | | 2s=19 | | (2z)+42=180 | | x/(-8)+8=12 | | -4g2=12g+112 | | 3(x+2)=2x-1= | | 3/4m-2/4=3/2m+12 | | 5x-11=4x* | | X2+11x+84=0 | | 3p-4=-3 | | (5x)+140=180 | | 9x=35+4(x+3) | | -13-4n=39 | | 5-3y=-7y+49 |