If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(7/(m+9))=m+10
We move all terms to the left:
(7/(m+9))-(m+10)=0
Domain of the equation: (m+9))!=0We get rid of parentheses
m∈R
(7/(m+9))-m-10=0
We multiply all the terms by the denominator
(7-m*(m+9))-10*(m+9))=0
We calculate terms in parentheses: +(7-m*(m+9)), so:We multiply parentheses
7-m*(m+9)
determiningTheFunctionDomain -m*(m+9)+7
We multiply parentheses
-m^2-9m+7
We add all the numbers together, and all the variables
-1m^2-9m+7
Back to the equation:
+(-1m^2-9m+7)
(-1m^2-9m+7)-10m-=0
We get rid of parentheses
-1m^2-9m-10m+7-=0
We add all the numbers together, and all the variables
-1m^2-19m=0
a = -1; b = -19; c = 0;
Δ = b2-4ac
Δ = -192-4·(-1)·0
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-19)-19}{2*-1}=\frac{0}{-2} =0 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-19)+19}{2*-1}=\frac{38}{-2} =-19 $
| Y4-y-6=0 | | s/3-2=3 | | 2s=19 | | (2z)+42=180 | | x/(-8)+8=12 | | -4g2=12g+112 | | 3(x+2)=2x-1= | | 3/4m-2/4=3/2m+12 | | 5x-11=4x* | | X2+11x+84=0 | | 3p-4=-3 | | (5x)+140=180 | | 9x=35+4(x+3) | | -13-4n=39 | | 5-3y=-7y+49 | | 7(+1)=2x+57 | | 3x=8/2x-4/2 | | -26+2t=-2 | | .6=x/9.6 | | x/9=-81 | | (1+7x)=6(-7-x)=36 | | 2x+10+4+5x=67 | | 3/4=-1/2y | | 4(9y-5)=10(3y=17)-40 | | m/16=-8 | | 4(9y-5=10(3y=17)-40 | | -(1+7x)=6(-7-x)=36 | | (7x-8)(-1)=26 | | 14=-k/8 | | -8j=-56 | | 6-5-4x=1-4x | | 6^x=82 |