If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10k^2=11
We move all terms to the left:
10k^2-(11)=0
a = 10; b = 0; c = -11;
Δ = b2-4ac
Δ = 02-4·10·(-11)
Δ = 440
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{440}=\sqrt{4*110}=\sqrt{4}*\sqrt{110}=2\sqrt{110}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{110}}{2*10}=\frac{0-2\sqrt{110}}{20} =-\frac{2\sqrt{110}}{20} =-\frac{\sqrt{110}}{10} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{110}}{2*10}=\frac{0+2\sqrt{110}}{20} =\frac{2\sqrt{110}}{20} =\frac{\sqrt{110}}{10} $
| -6(1+8x)=-294 | | 10k^2=11 | | 1/x=4/1.96 | | 5k^2+4K=57 | | -2(-8-5v)+12v-5=11(1+2v) | | 27.26=5g+3.96 | | 9(x-1)/3=3(x+2)/4 | | 6(v+2)=9v-6 | | 20+(q-11)=-12 | | 3x+15=3(x+50 | | -4(-4y+2)-6y=2(y-8)-4 | | -3(x+6)=24+3x | | 12.70=2g+3.52 | | 10x−36=x+72 | | 3.8x+52.5=20.1-12.4x | | 36x=72+10x | | 7(2b-4)=5(2b+6) | | 2/3(4/5x+2)=-1 | | 7(2b-4)=5(2b+6 | | 5x-5=30x+10 | | 4(v-8)=-20-2v | | 33x+15-7x=-7 | | 17x-9-9x=12x-4+7 | | 41.64=8g+3.72 | | 5x²-18x-35=0 | | 3/4(2x+1/2)=2 | | 30+x+40+26=180 | | -32-12x=20-14x | | 12(t-1)=8(t+2)-t | | 1/4(4y+8)-8=-1/8(24y-48) | | 7/10c-10=2/3 | | 4x(8)-6=24 |