10j-6(2j-1)=-2j(j-3)

Simple and best practice solution for 10j-6(2j-1)=-2j(j-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10j-6(2j-1)=-2j(j-3) equation:



10j-6(2j-1)=-2j(j-3)
We move all terms to the left:
10j-6(2j-1)-(-2j(j-3))=0
We multiply parentheses
10j-12j-(-2j(j-3))+6=0
We calculate terms in parentheses: -(-2j(j-3)), so:
-2j(j-3)
We multiply parentheses
-2j^2+6j
Back to the equation:
-(-2j^2+6j)
We add all the numbers together, and all the variables
-(-2j^2+6j)-2j+6=0
We get rid of parentheses
2j^2-6j-2j+6=0
We add all the numbers together, and all the variables
2j^2-8j+6=0
a = 2; b = -8; c = +6;
Δ = b2-4ac
Δ = -82-4·2·6
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$j_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-4}{2*2}=\frac{4}{4} =1 $
$j_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+4}{2*2}=\frac{12}{4} =3 $

See similar equations:

| 6x^2•18x=0 | | 6x+5+85=90 | | 2t+-6t=4 | | 12j-6(2j-1)=-2(j-3) | | 9(p+6)=3(p+2) | | 1=2p=13 | | x+21=82 | | 12j-6(2j-1)=-2j(j-3) | | 13c+5c-10c=8 | | 4x+2x=216-3x | | 6(x+10=42 | | 3g-2g-g+2g+3g=15 | | -1/2+11/2=1/2(3-r) | | B+24=-3b-16 | | c+42=3c+40 | | 2q-q+2q+2q-4q=7 | | 7w=71 | | n^2-3n+17=0 | | 15x+5x+x-13x=16 | | x−20.7=9.5x-20.7=9.5 | | n^2-3n+18=0 | | 14k-8k-4k=6 | | 22=-4x-7x | | 7x-3x+12=3x+7 | | 22.5*x−4.6=3.5 | | 15x+8x-2=90 | | 1/2(4r+14)=2r-7 | | 3x+.5(10-6)=21 | | -6+7x+9=3x-25 | | 15+3k=4(k+3) | | 8x+3-10x=-2x+7 | | 17x-11=91 |

Equations solver categories