If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10f^2+17f+3=0
a = 10; b = 17; c = +3;
Δ = b2-4ac
Δ = 172-4·10·3
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-13}{2*10}=\frac{-30}{20} =-1+1/2 $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+13}{2*10}=\frac{-4}{20} =-1/5 $
| 8(y+8)=72 | | 10g-7g=9 | | 8y+-5=-1 | | -6(2v-2)+2v=2(v+7) | | -5y+14y-17y=18 | | (6x+4)=(3x-15)+(2x-7) | | 8x-24=8x+24 | | 5+9n=n+5 | | (-7n+6)=(5n+15)= | | 12q+8q=20 | | (6x+4)=(2x-7)+(3x-15) | | 3s+6s=18 | | 9k-6k=15 | | 10x+12+4x=2(7x+6) | | -5u+2+5u=8-3u | | (2x-7)=(3x-15)+(6x+4) | | -22+10m=11m-12 | | 2z-4=3z-4 | | (3x-15)=(2x-7)+(6x+4) | | 2x3-5x2+7x-7=0 | | -2x+9=-4+3x | | (3x-15)=(6x+4)+(2x-7) | | 9+7z=1+6z | | (n-7)+2=7 | | 4(x+3)-4=8(12x+2) | | 10-s=-10+9s | | (6r-12)-5r+1=2r+6 | | 42=-9t-3 | | 9=5(5w+5)-7w | | 3x+8=4+3x | | 9k+8=8k | | (x-17)=(5x-17)+(2x-4) |