10=x*(0.04*x)

Simple and best practice solution for 10=x*(0.04*x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10=x*(0.04*x) equation:



10=x(0.04x)
We move all terms to the left:
10-(x(0.04x))=0
We add all the numbers together, and all the variables
-(x(+0.04x))+10=0
We calculate terms in parentheses: -(x(+0.04x)), so:
x(+0.04x)
We multiply parentheses
0x^2
We add all the numbers together, and all the variables
x^2
Back to the equation:
-(x^2)
We add all the numbers together, and all the variables
-1x^2+10=0
a = -1; b = 0; c = +10;
Δ = b2-4ac
Δ = 02-4·(-1)·10
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{10}}{2*-1}=\frac{0-2\sqrt{10}}{-2} =-\frac{2\sqrt{10}}{-2} =-\frac{\sqrt{10}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{10}}{2*-1}=\frac{0+2\sqrt{10}}{-2} =\frac{2\sqrt{10}}{-2} =\frac{\sqrt{10}}{-1} $

See similar equations:

| 5x-12+15=35 | | -3/8*u=-6 | | 5x-31=-8(x-1) | | -2(v+2)=2v-12 | | 18x=3x×3x+(7×-2x | | (x+3)×4=40 | | 2(x+20)=3(x-10) | | 12x-33=102 | | (x×5)÷1=19 | | 3÷x=0 | | -1(2y+10)=0 | | 2x/5=48 | | -1(-5y+5)=15 | | 12x-35=10x+6 | | 3=k-7 | | 32+x=98 | | -7+4(-2x+1)=-11x-6 | | -5(-7x-8)=3x+8 | | -5(-7x-8)=3x+8 | | !3083=349x | | 1+2c=193993 | | 0.3×x+25=x | | 216a^2-793a+216=0 | | 5-1/6x=2/3x+1 | | ×2+4×+3=0,2×+4y=10 | | 5z-5=5 | | 5x-13+x+15+x+8=180 | | (0.12x)+(0.0075x)+200=21666 | | (3x+8)=(2x+8) | | x+54=-14 | | 2x-x=-36 | | x+102=-17 |

Equations solver categories