102=(1/2)n(n-1)

Simple and best practice solution for 102=(1/2)n(n-1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 102=(1/2)n(n-1) equation:



102=(1/2)n(n-1)
We move all terms to the left:
102-((1/2)n(n-1))=0
Domain of the equation: 2)n(n-1))!=0
n∈R
We add all the numbers together, and all the variables
-((+1/2)n(n-1))+102=0
We multiply all the terms by the denominator
-((+1+102*2)n(n-1))=0
We calculate terms in parentheses: -((+1+102*2)n(n-1)), so:
(+1+102*2)n(n-1)
We add all the numbers together, and all the variables
205n(n-1)
We multiply parentheses
205n^2-205n
Back to the equation:
-(205n^2-205n)
We get rid of parentheses
-205n^2+205n=0
a = -205; b = 205; c = 0;
Δ = b2-4ac
Δ = 2052-4·(-205)·0
Δ = 42025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{42025}=205$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(205)-205}{2*-205}=\frac{-410}{-410} =1 $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(205)+205}{2*-205}=\frac{0}{-410} =0 $

See similar equations:

| 3.825z+1.25=40 | | 3(x-1)=5(×+4) | | 3(c+12)=2c+18 | | 3x-84=-51 | | 3)1-3x)=2(-4x+7) | | 6x-8=86 | | x/6=-38 | | 7+12k+6=31 | | X^2-2x+6=-6x+3 | | ,f-0.13=06 | | 6x-3(5x-18)=-18 | | -8g=-48 | | -3(-5-2n)-6(1-5n)=9 | | 3(x+4)+2=11 | | X^2-12x-42=-5x+2 | | 5a/8a+6=3a/4a | | X^2-5x-23=1 | | f(5)=−1f(0)=−5 | | x^2+13=61 | | p2-9p+6=0 | | 9+x/4=32 | | 3(2x+4)-1x=5x-9 | | 351=18x+(1/2)(x-4)(x) | | 48-u=7u | | -5x-3×=-56 | | 7v-(6+2v)=12 | | f(5)=−1f(0)=−5. | | 5(w+3)-7w=27 | | 11=3u-16 | | x+(5/100)=105 | | 133=3x-5(5x+13) | | (2x)=68 |

Equations solver categories