If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100x^2+800x=0
a = 100; b = 800; c = 0;
Δ = b2-4ac
Δ = 8002-4·100·0
Δ = 640000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{640000}=800$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(800)-800}{2*100}=\frac{-1600}{200} =-8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(800)+800}{2*100}=\frac{0}{200} =0 $
| -8-7(a+6)=-39+4a | | y/7-3=-11 | | 5t+7=-23+2t | | 12x-12=47 | | 40x=8400 | | -5k-8k=-15-8k | | 10=-5x/3 | | 40x^2+350=50x^2+250 | | f(-7)=2(-7)-3 | | 3x+3=-1+2x-11 | | 6(4n+7)=-102 | | 7+2p=7(1-6p) | | 2=10−2f | | M-6+7m=16-2m | | -8k-2=-82 | | 28+6x=4(7+8x) | | j3+-9=-7 | | x-3+2x-13=32 | | 4{x-2}=3x+1 | | -7=2-x | | 1+8a=-8a+1 | | 3c+3=23 | | -111=2s=9 | | 28=28+26x | | 1/3y+1/4=9/12 | | 28=26+28x | | 7c+8=-13 | | -8(-3-2r)=-104 | | 2/4y-2/5=5 | | 3u2+16u+16=0 | | 8b+12=-36 | | 6+5m=56 |