If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100=(p-1)(200-40p)
We move all terms to the left:
100-((p-1)(200-40p))=0
We add all the numbers together, and all the variables
-((p-1)(-40p+200))+100=0
We multiply parentheses ..
-((-40p^2+200p+40p-200))+100=0
We calculate terms in parentheses: -((-40p^2+200p+40p-200)), so:We get rid of parentheses
(-40p^2+200p+40p-200)
We get rid of parentheses
-40p^2+200p+40p-200
We add all the numbers together, and all the variables
-40p^2+240p-200
Back to the equation:
-(-40p^2+240p-200)
40p^2-240p+200+100=0
We add all the numbers together, and all the variables
40p^2-240p+300=0
a = 40; b = -240; c = +300;
Δ = b2-4ac
Δ = -2402-4·40·300
Δ = 9600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9600}=\sqrt{1600*6}=\sqrt{1600}*\sqrt{6}=40\sqrt{6}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-240)-40\sqrt{6}}{2*40}=\frac{240-40\sqrt{6}}{80} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-240)+40\sqrt{6}}{2*40}=\frac{240+40\sqrt{6}}{80} $
| 5/6y+1=-1/5y+9 | | 2x+4(x–1)=5–3(x–3) | | 36−7w=−7(w−5) | | 8(x+1)+6=2x+6(3+x) | | 3p+8=20-p | | .3+y/3=5 | | 7+9(z+6)=7 | | 7x+8=-3x-72 | | s+4=100 | | .75x+2=7 | | 5y+9=2(y-9) | | 6h=-2 | | -9+x-12=-4 | | (k-2)+(2k+8)=180 | | s=4=100 | | -x+13=-3x+11 | | x+(5−3x)=7x+4 | | y/7+5=7 | | -8(-5+x)=149 | | 3d+36=3d-54 | | 3(x-4)=3x-15 | | -17x=-170 | | 5(v+2)-8v=-14 | | x+67=282 | | 7=3(3)-2x | | 6-7x=2x-84 | | 12-5d=d+6 | | -10=-5d | | 10(x+40)-18(x+3)=290 | | 115=x+.25x | | 18=9-3y | | -2x-8=-2(x+11) |