100=(8+x)(5+x)

Simple and best practice solution for 100=(8+x)(5+x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 100=(8+x)(5+x) equation:



100=(8+x)(5+x)
We move all terms to the left:
100-((8+x)(5+x))=0
We add all the numbers together, and all the variables
-((x+8)(x+5))+100=0
We multiply parentheses ..
-((+x^2+5x+8x+40))+100=0
We calculate terms in parentheses: -((+x^2+5x+8x+40)), so:
(+x^2+5x+8x+40)
We get rid of parentheses
x^2+5x+8x+40
We add all the numbers together, and all the variables
x^2+13x+40
Back to the equation:
-(x^2+13x+40)
We get rid of parentheses
-x^2-13x-40+100=0
We add all the numbers together, and all the variables
-1x^2-13x+60=0
a = -1; b = -13; c = +60;
Δ = b2-4ac
Δ = -132-4·(-1)·60
Δ = 409
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-\sqrt{409}}{2*-1}=\frac{13-\sqrt{409}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+\sqrt{409}}{2*-1}=\frac{13+\sqrt{409}}{-2} $

See similar equations:

| 9/11=x+4/5 | | 6x+3(5x+9)=-99 | | 5x+10+2x=90 | | 5x+10+2x=0 | | 10x-89=5x+14 | | 2.57+y=1.6, | | 5x+14=10x-89 | | 8x-50=9x+0 | | 3/2(9x−12)=8+2x | | (2x-3)(5x+1)=2x+2/5 | | 3/2​ (9x−12)=8+2x | | 42+7(5w)=w | | 710=m+37 | | 10x+27=13x+3 | | 6z-1=-19 | | 4x-3(-3x+5)=-80 | | 8u=640 | | 13x-5=6x-10 | | 1/7(x+4)=4 | | r+16=226 | | g+182=961 | | g+28=8 | | x+10+2x-5+x-10=90 | | (8x-24)+(86-2x)=130 | | 2(n+17)=0.375 | | 17f=629 | | v/17+24=-18 | | F(x)=6x+24 | | h+14=37 | | -7x+6(4x-11)=53 | | x+4x-15=90 | | t/10=22 |

Equations solver categories