If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100=(1/2)(z*0.8660254038)
We move all terms to the left:
100-((1/2)(z*0.8660254038))=0
Domain of the equation: 2)(z*0.8660254038))!=0We add all the numbers together, and all the variables
z∈R
-((+1/2)(+z*0.8660254038))+100=0
We multiply parentheses ..
-((+0.8660254038z^2))+100=0
We calculate terms in parentheses: -((+0.8660254038z^2)), so:We get rid of parentheses
(+0.8660254038z^2)
We get rid of parentheses
0.8660254038z^2
Back to the equation:
-(0.8660254038z^2)
-0.8660254038z^2+100=0
a = -0.8660254038; b = 0; c = +100;
Δ = b2-4ac
Δ = 02-4·(-0.8660254038)·100
Δ = 346.41016152
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{346.41016152}}{2*-0.8660254038}=\frac{0-\sqrt{346.41016152}}{-1.7320508076} =-\frac{\sqrt{}}{-1.7320508076} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{346.41016152}}{2*-0.8660254038}=\frac{0+\sqrt{346.41016152}}{-1.7320508076} =\frac{\sqrt{}}{-1.7320508076} $
| -x^2+5x=2^2 | | -x2+5x=22 | | 6(3k+2)-3(k+5)=15k | | X-2/x+5=1/5 | | X-2/x+8=1/5 | | 2x+3/3x+2=-8/3 | | 5p^2-100p=0 | | X+7/3-3x-2/5=3 | | r/16–38=21 | | 7(x+3)=5(x-4)+x-10 | | T(n+1)=T2(n) | | 3t=6t-21/5 | | 3(x-7)=2x+81 | | 3(2-3y)=2y-2 | | y2-9y+14=0 | | 6^7x=270 | | 9v=36+5v | | -6=6(13x+3)+14x | | 49-4v=3v | | 5(x+4)=4(x-16) | | 243^2x=1/81 | | |4x–2|=–6 | | 2x-2+14x=6(6x-2)+6 | | 9x-2=3x+34 | | 5,x-7=x+29 | | x=12-35/x | | 5(x-4)=10x-5 | | 6=5+n/4 | | x×2/3=360 | | -8=-10+k/10 | | 3=k/2+8 | | 10=2+r/2 |