If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1000x^2+11000x+28000=0
a = 1000; b = 11000; c = +28000;
Δ = b2-4ac
Δ = 110002-4·1000·28000
Δ = 9000000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9000000}=3000$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11000)-3000}{2*1000}=\frac{-14000}{2000} =-7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11000)+3000}{2*1000}=\frac{-8000}{2000} =-4 $
| (x+2)+(3x+2)+(7x)=180 | | 5x^2+6=306 | | 5x+6=306 | | 3(x+6)+9=54 | | 5x(3.7)=3x(6.3) | | 1000x^2+11000x+28000=0 | | (5x+7)+(4x+20)=90 | | 40x-8=90 | | 5x^2-3x+2=1 | | x-0.08x=0.92x | | (4x)+(x+6)+(3x-2)=180 | | F(X+7)=2x+7 | | 3x(14-x)=x(21-3x) | | X+.07x=39000 | | 28+3.50x=40 | | 7w-21=5(w-1) | | 6=6u+6(u-7) | | 36-7(7x-4)=19+5(x-2)-25 | | m/5+2=8 | | 7(-1+x)+3(4-5x)+4(1-x)+3(x-2)=0 | | 7p+15-5p.10=-17+13p | | -7+3v=19 | | 2/7x+4/7=-4/7+4/7=-8/7 | | Y=(12/126)x | | 40(p-10)=30 | | 2.50r=20 | | 3x-21=1+2x | | 2x+5+3=2-2x+8x | | 50+5x=110 | | 0.5-y=3 | | 0.5-y=2.5 | | 3+r/2=7 |