If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100(6x+7)=10(x2+16x-7)
We move all terms to the left:
100(6x+7)-(10(x2+16x-7))=0
We add all the numbers together, and all the variables
-(10(+x^2+16x-7))+100(6x+7)=0
We multiply parentheses
-(10(+x^2+16x-7))+600x+700=0
We calculate terms in parentheses: -(10(+x^2+16x-7)), so:We add all the numbers together, and all the variables
10(+x^2+16x-7)
We multiply parentheses
10x^2+160x-70
Back to the equation:
-(10x^2+160x-70)
600x-(10x^2+160x-70)+700=0
We get rid of parentheses
-10x^2+600x-160x+70+700=0
We add all the numbers together, and all the variables
-10x^2+440x+770=0
a = -10; b = 440; c = +770;
Δ = b2-4ac
Δ = 4402-4·(-10)·770
Δ = 224400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{224400}=\sqrt{400*561}=\sqrt{400}*\sqrt{561}=20\sqrt{561}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(440)-20\sqrt{561}}{2*-10}=\frac{-440-20\sqrt{561}}{-20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(440)+20\sqrt{561}}{2*-10}=\frac{-440+20\sqrt{561}}{-20} $
| 14x+4=-24x-24 | | 5/x-3/16-x=0 | | 2x/6+1=8x/16×3 | | 3(1/4)^x+1=192 | | 6+3x=400 | | 3p+18=24p= | | 20t=-2 | | 4(2x-7)-8(5-x)=3(2x+4)-5(+7) | | 2*3^n=162 | | 12/100(x+100)=18 | | 1.x-1/x=1.15 | | x+8x+3x=60 | | 2x+3+4x-3x=8+7 | | m/5+55=22 | | m/5=55 | | t/16=30 | | -60x=1 | | 4+14=8x-6x+x | | 10-2(5w+4)=3(5+w) | | 6(2v-6)+5=7+4+6 | | x-6/13=2/13 | | 12-5b=2 | | 1/2(x+8)=34 | | a-33=67 | | p+85=100 | | 3X×3X-2x=10 | | 12x^2-17x+1=0 | | 4x-20=9x+50 | | k-11+4(k+3)=9+3-10+14 | | 3(v-8)+5v=8-6+10-4 | | 10x-2=12x+2 | | 3y+7+4y-6=8 |