10+x=5)1/5x+2)

Simple and best practice solution for 10+x=5)1/5x+2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10+x=5)1/5x+2) equation:



10+x=5)1/5x+2)
We move all terms to the left:
10+x-(5)1/5x+2))=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
We add all the numbers together, and all the variables
x-51/5x=0
We multiply all the terms by the denominator
x*5x-51=0
Wy multiply elements
5x^2-51=0
a = 5; b = 0; c = -51;
Δ = b2-4ac
Δ = 02-4·5·(-51)
Δ = 1020
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1020}=\sqrt{4*255}=\sqrt{4}*\sqrt{255}=2\sqrt{255}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{255}}{2*5}=\frac{0-2\sqrt{255}}{10} =-\frac{2\sqrt{255}}{10} =-\frac{\sqrt{255}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{255}}{2*5}=\frac{0+2\sqrt{255}}{10} =\frac{2\sqrt{255}}{10} =\frac{\sqrt{255}}{5} $

See similar equations:

| 7=-5a+3a | | 2.5x=46.25 | | 1000000c=235000000 | | z2+4z–21=0 | | 3z/7-1=10z= | | 3^4x=3- | | 2+4/k-2=8/k^2-2k | | (4/9)x=6561/256 | | 4(3x+1)-10=-2(3x-2) | | 25=4.5z=12 | | 2n+8=3n-7 | | 231/b=0.16 | | 6^x+8=17^2x-2 | | x/7+4=4 | | 22+3b=7 | | 5x-6=-2(2x-3) | | 6(7–x)=18 | | 8m-12=53 | | 12(x-6)=72 | | 3(2x-3)+5=8 | | .05x+x=594803 | | 668.85=39(x+2.15) | | 53a=127 | | -45+2x+12=x-23+3x | | 7+(8-2)=n+5n= | | (7x+3)^2=36 | | (1+(x-0.02))^10=1.66 | | 5x-3+2x=8-6x-10 | | 985v=941660 | | 2x/6=3/2 | | 20+3x-12=6x-8-4x | | 48+x×8=15+x×15 |

Equations solver categories