10(v+4)2v=2(v+1)-8

Simple and best practice solution for 10(v+4)2v=2(v+1)-8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10(v+4)2v=2(v+1)-8 equation:



10(v+4)2v=2(v+1)-8
We move all terms to the left:
10(v+4)2v-(2(v+1)-8)=0
We multiply parentheses
20v^2+80v-(2(v+1)-8)=0
We calculate terms in parentheses: -(2(v+1)-8), so:
2(v+1)-8
We multiply parentheses
2v+2-8
We add all the numbers together, and all the variables
2v-6
Back to the equation:
-(2v-6)
We get rid of parentheses
20v^2+80v-2v+6=0
We add all the numbers together, and all the variables
20v^2+78v+6=0
a = 20; b = 78; c = +6;
Δ = b2-4ac
Δ = 782-4·20·6
Δ = 5604
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5604}=\sqrt{4*1401}=\sqrt{4}*\sqrt{1401}=2\sqrt{1401}$
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(78)-2\sqrt{1401}}{2*20}=\frac{-78-2\sqrt{1401}}{40} $
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(78)+2\sqrt{1401}}{2*20}=\frac{-78+2\sqrt{1401}}{40} $

See similar equations:

| -12-15r=-19r | | x-(x/1.4)=1250 | | x-(x/1.4)-1250=0 | | 0=x-1250-x/1.4 | | 5x/9+72=x | | 45*x*x=-17 | | 0=x-(1250+0.6x) | | 21x-20=540 | | 0=x-(1250+0.4x) | | 21x-20=560 | | 6h-6=23 | | 1250=x-0.4x | | 5x²-12x=9 | | 5x²-12x-9=0 | | 12-x^2=8 | | 3x2(2+3x)=0 | | (4x-5)*(5+4x)-6=4x(4x-3)-2 | | 2x-3(3)+10(2)=1 | | 4+5r=r | | 8=x×x/(0.1-x)(0.1-x) | | 0,003t2+0,007t-34=0 | | M3+6m2+11m+6=0 | | 3t2+7t-34=0 | | 3y+18(-1)+6(3)=24 | | 2X2+10x+5=0 | | 200=1000-x/4 | | 3x+2(x-7)=60 | | H(x)=x^-2x-3 | | 2=5(x-5)-3(x-2) | | 3=4(x-5)-2(x+6) | | 5x+52=12 | | 8x-5-5x+6 x=-2 |

Equations solver categories