10(2x+4)9x=6(6x+1)

Simple and best practice solution for 10(2x+4)9x=6(6x+1) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10(2x+4)9x=6(6x+1) equation:



10(2x+4)9x=6(6x+1)
We move all terms to the left:
10(2x+4)9x-(6(6x+1))=0
We multiply parentheses
180x^2+360x-(6(6x+1))=0
We calculate terms in parentheses: -(6(6x+1)), so:
6(6x+1)
We multiply parentheses
36x+6
Back to the equation:
-(36x+6)
We get rid of parentheses
180x^2+360x-36x-6=0
We add all the numbers together, and all the variables
180x^2+324x-6=0
a = 180; b = 324; c = -6;
Δ = b2-4ac
Δ = 3242-4·180·(-6)
Δ = 109296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{109296}=\sqrt{144*759}=\sqrt{144}*\sqrt{759}=12\sqrt{759}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(324)-12\sqrt{759}}{2*180}=\frac{-324-12\sqrt{759}}{360} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(324)+12\sqrt{759}}{2*180}=\frac{-324+12\sqrt{759}}{360} $

See similar equations:

| 63.25=2^x | | x2−6x+19=0 | | 3/x-6=9 | | 14x-10=3(4x+x) | | (x+40)(x-10)=0 | | 1/8x-1/64=1/2x-1/4 | | 4x+9=350 | | 4t−27=17 | | 96=16u+630 | | 3-x=144 | | 4x^2+4x-5=-30 | | x+32/3=2x+1/3 | | 1/3x+3=46 | | 1/3x=43 | | 9y/5=90 | | x/10+5/12=3x+1 | | 10y-10=90 | | -x^2+3=2x | | -1/8y-1/20=-3/4y-1/8 | | 2x(x-9)=3(x-6) | | A=-16x^2+64x | | -4/3u-5/2=-9/5 | | (7/y)+(1/2)=14 | | 3x(x+1)+2=5x+7 | | 0=2/7x+2 | | 7/y+1/2=14 | | 30-(1/24)(3x)=20-(1-24)(2x) | | -11+2x=25 | | x/2+3=-0.5 | | 6y-3=12y+21 | | -386=-146-12x | | 9+2.5(1-3d)=-26.5 |

Equations solver categories