2x(x-9)=3(x-6)

Simple and best practice solution for 2x(x-9)=3(x-6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x(x-9)=3(x-6) equation:



2x(x-9)=3(x-6)
We move all terms to the left:
2x(x-9)-(3(x-6))=0
We multiply parentheses
2x^2-18x-(3(x-6))=0
We calculate terms in parentheses: -(3(x-6)), so:
3(x-6)
We multiply parentheses
3x-18
Back to the equation:
-(3x-18)
We get rid of parentheses
2x^2-18x-3x+18=0
We add all the numbers together, and all the variables
2x^2-21x+18=0
a = 2; b = -21; c = +18;
Δ = b2-4ac
Δ = -212-4·2·18
Δ = 297
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{297}=\sqrt{9*33}=\sqrt{9}*\sqrt{33}=3\sqrt{33}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-21)-3\sqrt{33}}{2*2}=\frac{21-3\sqrt{33}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-21)+3\sqrt{33}}{2*2}=\frac{21+3\sqrt{33}}{4} $

See similar equations:

| A=-16x^2+64x | | -4/3u-5/2=-9/5 | | (7/y)+(1/2)=14 | | 3x(x+1)+2=5x+7 | | 0=2/7x+2 | | 7/y+1/2=14 | | 30-(1/24)(3x)=20-(1-24)(2x) | | -11+2x=25 | | x/2+3=-0.5 | | 6y-3=12y+21 | | -386=-146-12x | | 9+2.5(1-3d)=-26.5 | | -7×+11=19-x | | 5x+11=25 | | 9+t=4t-3(t+6) | | (4x-3)-(2x+7)=0 | | 5(x+3)-×=-(4x-6)+1 | | 5(2x+4=60 | | 5. –18+15x=3(4x–6)+3x | | 2.22=1.5b | | 1-2x=5(x-4) | | x/18=-4/9 | | 6+1/3x-3=1-1/2x | | 243+3^2x-43^x+2=0 | | 5x-19=4x-14 | | 35+18u-15u^2=0 | | 5-3x-21=4-2x | | 3x^+6x-24=0 | | 15u^2-18u-35=0 | | -2x+19-6x=91 | | 8x-4.6=-3.5 | | 6x+8=9x+8 |

Equations solver categories