1/x+1/2x=4/x+2

Simple and best practice solution for 1/x+1/2x=4/x+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/x+1/2x=4/x+2 equation:



1/x+1/2x=4/x+2
We move all terms to the left:
1/x+1/2x-(4/x+2)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: x+2)!=0
x∈R
We get rid of parentheses
1/x+1/2x-4/x-2=0
We calculate fractions
(-8x+1)/2x^2+x/2x^2-2=0
We multiply all the terms by the denominator
(-8x+1)+x-2*2x^2=0
We add all the numbers together, and all the variables
x+(-8x+1)-2*2x^2=0
Wy multiply elements
-4x^2+x+(-8x+1)=0
We get rid of parentheses
-4x^2+x-8x+1=0
We add all the numbers together, and all the variables
-4x^2-7x+1=0
a = -4; b = -7; c = +1;
Δ = b2-4ac
Δ = -72-4·(-4)·1
Δ = 65
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{65}}{2*-4}=\frac{7-\sqrt{65}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{65}}{2*-4}=\frac{7+\sqrt{65}}{-8} $

See similar equations:

| Y=5x/x+5x | | 0.8*n-0.2=0.4*n | | 52+x+45=180 | | x^2=49/64=0 | | 6x+15-3x-1=20x-20 | | 4(x=6) | | 9m−7m=16 | | 4(x+4)=2(2x+5) | | y/3-6=-2 | | 6(x-9)=6x-54=+6 | | 2.3x=13.8= | | 4x2–15x+11=0 | | 8.5=9.7-0.4x | | -40=4(x+3) | | 64-12×2+6÷3=x | | x(3x=2) | | 3/x-5=(-5/2x-10)+4 | | -3(r+7=-41 | | 155=5-10m | | 3/x-5=-(5/2x-10)=4 | | -2x-1+x^2-4x=0 | | 5m2+6m−5=0 | | 3/x-5=-(5/2x10)=4 | | w^2+3w=168 | | -10b+9=-21 | | -6a-3=-6a+3 | | 11x=85+6x | | 7x-3=-(9-7x) | | -7(m+1)-m-10=-8(m+4)+15 | | 2x+5(x-8)=2(x-10) | | 6W-8w=6 | | –x2+16=0 |

Equations solver categories