If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/t-1+t/3t-2=1/3
We move all terms to the left:
1/t-1+t/3t-2-(1/3)=0
Domain of the equation: t!=0
t∈R
Domain of the equation: 3t!=0We add all the numbers together, and all the variables
t!=0/3
t!=0
t∈R
1/t+t/3t-1-2-(+1/3)=0
We add all the numbers together, and all the variables
1/t+t/3t-3-(+1/3)=0
We get rid of parentheses
1/t+t/3t-3-1/3=0
We calculate fractions
t^2/27t^2+27t/27t^2+(-t)/27t^2-3=0
We add all the numbers together, and all the variables
t^2/27t^2+27t/27t^2+(-1t)/27t^2-3=0
We multiply all the terms by the denominator
t^2+27t+(-1t)-3*27t^2=0
Wy multiply elements
t^2-81t^2+27t+(-1t)=0
We get rid of parentheses
t^2-81t^2+27t-1t=0
We add all the numbers together, and all the variables
-80t^2+26t=0
a = -80; b = 26; c = 0;
Δ = b2-4ac
Δ = 262-4·(-80)·0
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-26}{2*-80}=\frac{-52}{-160} =13/40 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+26}{2*-80}=\frac{0}{-160} =0 $
| 3x(2x-3)=104 | | X=5c/4c | | 1/2x+6=7 | | -6x-12x=18 | | x+4/16=1/8+x-6/2 | | 40+15x+0.25=45+0.35 | | 2x+2(x-1)=3(x+1)-x+11 | | 8=5v-6/6+3v+2/5 | | 3(y-1)+9=8Y+6 | | 1/2(2x-4)-3(-x+6)=20 | | 3/5+x/2=27 | | 5x/9=-51 | | 6+3e=e-8 | | (a/7)-(5/7)=6/7 | | 2x+12=-31 | | t÷3−21=17 | | -21-8x=-9x+9 | | (2x-3)x(3)=105 | | .5(2x-4)-3(-x+6)=20 | | -8+5h=7 | | 8x-16=-3x-14 | | -8.4(x-1.5)=16.8 | | 6x+14+9x+31=180 | | 2y-6=5y+18 | | 8-3/5x-10+4/5x=7 | | -188+10x=-2x+88 | | 1/3(9x+42)-5x=-70 | | 2r+16=4r-24 | | 14x+21=20x-4 | | -3(x+2)-5(-2x+3)=-35 | | -5a+6+9a=8a-6a | | x-2/6=x-1/9+7/18 |