1/7x-19/14=3/2x

Simple and best practice solution for 1/7x-19/14=3/2x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/7x-19/14=3/2x equation:



1/7x-19/14=3/2x
We move all terms to the left:
1/7x-19/14-(3/2x)=0
Domain of the equation: 7x!=0
x!=0/7
x!=0
x∈R
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
1/7x-(+3/2x)-19/14=0
We get rid of parentheses
1/7x-3/2x-19/14=0
We calculate fractions
(-532x^2)/196x^2+28x/196x^2+(-294x)/196x^2=0
We multiply all the terms by the denominator
(-532x^2)+28x+(-294x)=0
We get rid of parentheses
-532x^2+28x-294x=0
We add all the numbers together, and all the variables
-532x^2-266x=0
a = -532; b = -266; c = 0;
Δ = b2-4ac
Δ = -2662-4·(-532)·0
Δ = 70756
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{70756}=266$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-266)-266}{2*-532}=\frac{0}{-1064} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-266)+266}{2*-532}=\frac{532}{-1064} =-1/2 $

See similar equations:

| -2/3+x-4=12/3-2x-1/3 | | .5x−3.5=0.2x−0.5 | | 12x-25-3x=14x | | 13p-17p+-14=10 | | 2x-1/x=54 | | x+46+33=180 | | (7x-5)=8(x+3) | | 1/7x-41/14=7/8x | | 423.60=180+1.05x= | | −3b+2=4b−12 | | (7x+27)=90 | | x+43+36=180 | | X/4+16=3(1/4x+11/3) | | F(n)=(-1)n+4 | | X/4+16=3(1/4x+11/3 | | 4j+7=-7+6j | | 29=3y+1+4y | | F(n)=n² | | -8t+4=-10t | | x+124+23=180 | | 3x+4/2x=9 | | 4^x-1=8^x | | 2/3(6x+3)=1/2(8x+4) | | -83=-2m+7(4m+3 | | -6(4-x)=9(3x-7) | | .(2x−7)(4x+3)=112 | | 2x-4=14x-16 | | 15z-14z+4=20 | | 9-q=2q-9 | | x=(18.5)(10)/1=185 | | 4/3x-4=-5/4x-7/3 | | 8v=7v+8 |

Equations solver categories