If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/7x+1/9x+1/7=89/63
We move all terms to the left:
1/7x+1/9x+1/7-(89/63)=0
Domain of the equation: 7x!=0
x!=0/7
x!=0
x∈R
Domain of the equation: 9x!=0We add all the numbers together, and all the variables
x!=0/9
x!=0
x∈R
1/7x+1/9x+1/7-(+89/63)=0
We get rid of parentheses
1/7x+1/9x+1/7-89/63=0
We calculate fractions
(-353241x^2)/194481x^2+3402x/194481x^2+21609x/194481x^2+3402x/194481x^2=0
We multiply all the terms by the denominator
(-353241x^2)+3402x+21609x+3402x=0
We add all the numbers together, and all the variables
(-353241x^2)+28413x=0
We get rid of parentheses
-353241x^2+28413x=0
a = -353241; b = 28413; c = 0;
Δ = b2-4ac
Δ = 284132-4·(-353241)·0
Δ = 807298569
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{807298569}=28413$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(28413)-28413}{2*-353241}=\frac{-56826}{-706482} =451/5607 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(28413)+28413}{2*-353241}=\frac{0}{-706482} =0 $
| V=-16+10t | | x^2+172=0 | | x^2+172=0 | | 5c=7(2c+3)-12 | | W^2-4w=-44 | | 3(X+2)-10=4x+x | | 66=6x+42 | | 5=-4.9t^2+24.5t+1 | | -8.5=-6x+2 | | 2(x+13)=3x-34 | | n+3(5n+3)=41 | | y=-0.5+72 | | 20=n/4= | | 2^3x=29 | | 4x-3+3x-1=51 | | 4(p-3)=2p,7 | | 2m+44=9m-5 | | -14x-5x-136=206 | | 2-3=8x-3 | | Y=2x2-x+6 | | 9x-28=5x+70 | | 100+.2x=0 | | 1x-25-3x=35 | | (X/4+20)x2=80 | | 2y+5y=90+2 | | (x+4)+34x+x^2-x^=-32 | | 3x-106+5x=46 | | -112.5=3.75b | | .4x=10000 | | j=(6)(4)(7)=34 | | j=3910 | | -40+x=6(6-3x) |