1/7a-2=3/14a+1

Simple and best practice solution for 1/7a-2=3/14a+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/7a-2=3/14a+1 equation:



1/7a-2=3/14a+1
We move all terms to the left:
1/7a-2-(3/14a+1)=0
Domain of the equation: 7a!=0
a!=0/7
a!=0
a∈R
Domain of the equation: 14a+1)!=0
a∈R
We get rid of parentheses
1/7a-3/14a-1-2=0
We calculate fractions
14a/98a^2+(-21a)/98a^2-1-2=0
We add all the numbers together, and all the variables
14a/98a^2+(-21a)/98a^2-3=0
We multiply all the terms by the denominator
14a+(-21a)-3*98a^2=0
Wy multiply elements
-294a^2+14a+(-21a)=0
We get rid of parentheses
-294a^2+14a-21a=0
We add all the numbers together, and all the variables
-294a^2-7a=0
a = -294; b = -7; c = 0;
Δ = b2-4ac
Δ = -72-4·(-294)·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{49}=7$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-7}{2*-294}=\frac{0}{-588} =0 $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+7}{2*-294}=\frac{14}{-588} =-1/42 $

See similar equations:

| 17+4h-2=1-5h | | (2x+40)5x=360 | | 10x+9=4+2(x-5) | | -16-4x=6(1+3x | | F=(9/5x15)+32 | | 4x+3-8x=9+2-12 | | 1/2x=3/4(2x) | | 8(5p+8)+2(p-3)=16 | | 3/4x17=23 | | 8-2n=n+19 | | 7n+4=7n+4 | | 3∣y−5∣−9=0 | | (5x/2)=7 | | 9x+8=14x+11=180 | | 3∣∣y−5∣∣−9=0 | | 1/7m-2=3/14m+1 | | 2+x-6=35 | | (2x+40)=360+5x | | 2x+1/6+5x/4=3 | | 3(2y+4)=49y+7) | | -103-15x=95-4x | | -15-3m=1-5m | | 60+0.4x=20+0.08x | | (2x+40)=360-5x | | 7(4+4x)=-28 | | -3(r+7)=-6(r+3) | | 24+3b=4 | | |x−9|=4x | | |x−9|=4x. | | (2n/3)=4 | | 8x-2(2x+9)=x+42 | | 29s+4=13s-10 |

Equations solver categories