If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/6x-3+3/2x-1-2/3=0
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
Domain of the equation: 2x!=0We add all the numbers together, and all the variables
x!=0/2
x!=0
x∈R
1/6x+3/2x-4-2/3=0
We calculate fractions
(-48x^2)/108x^2+18x/108x^2+162x/108x^2-4=0
We multiply all the terms by the denominator
(-48x^2)+18x+162x-4*108x^2=0
We add all the numbers together, and all the variables
(-48x^2)+180x-4*108x^2=0
Wy multiply elements
(-48x^2)-432x^2+180x=0
We get rid of parentheses
-48x^2-432x^2+180x=0
We add all the numbers together, and all the variables
-480x^2+180x=0
a = -480; b = 180; c = 0;
Δ = b2-4ac
Δ = 1802-4·(-480)·0
Δ = 32400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{32400}=180$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(180)-180}{2*-480}=\frac{-360}{-960} =3/8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(180)+180}{2*-480}=\frac{0}{-960} =0 $
| (X+4)+(x+5)+(x+2)=(x+3)+(x+3)+(x+1)+(x+1) | | q/5+10=30 | | (-3i)(5i)=15i | | 12(x-20)=-48* | | (-3i)(5i)=15 | | 2x-7/5x=1/2/3 | | 8y-20=12 | | 2(2x+6)=5x+6 | | -16t^2+82t=0 | | 9n-65=2(5-3n) | | 2m2+5m+3=0 | | 5/3=2/2x | | Y=3x+7=21-4x | | 243(x+3)=81(x2) | | 4c+50=150 | | +6x=41 | | 6x2.68=16.08 | | (x–6)(180/x+1)=180 | | 5x-12=1x-4 | | 1404=10(p+27) | | 2x=16–2x | | 6x=2.68 | | 5x+9x+11x-5=180 | | 10x+2=10x+19 | | p+10=17 | | 3^q=81 | | 6n=34 | | -20=-1x+2 | | 6=x2.68 | | -20=1+7x+2 | | 16x+24=8(2x3) | | |m+7|=18 |