1/6x-2=1/3x+8

Simple and best practice solution for 1/6x-2=1/3x+8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/6x-2=1/3x+8 equation:



1/6x-2=1/3x+8
We move all terms to the left:
1/6x-2-(1/3x+8)=0
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
Domain of the equation: 3x+8)!=0
x∈R
We get rid of parentheses
1/6x-1/3x-8-2=0
We calculate fractions
3x/18x^2+(-6x)/18x^2-8-2=0
We add all the numbers together, and all the variables
3x/18x^2+(-6x)/18x^2-10=0
We multiply all the terms by the denominator
3x+(-6x)-10*18x^2=0
Wy multiply elements
-180x^2+3x+(-6x)=0
We get rid of parentheses
-180x^2+3x-6x=0
We add all the numbers together, and all the variables
-180x^2-3x=0
a = -180; b = -3; c = 0;
Δ = b2-4ac
Δ = -32-4·(-180)·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{9}=3$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-3}{2*-180}=\frac{0}{-360} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+3}{2*-180}=\frac{6}{-360} =-1/60 $

See similar equations:

| A=19-7(n-1 | | x+11/7=2x+1/8 | | 2(57+x)=180 | | (2x+5)(x–8)=0 | | -(x+5)-2x=-35 | | 6(x-2)+15=7x+3 | | 50/19=n+1 | | 2x-165+x-15=180 | | 9-4|8p-4|=-7 | | 5(x+8)–7=23 | | 24=5(h-2)+h+10 | | 15–3x=51 | | -2x(6-3x)=-12+6x | | 2c=-20 | | M(4x+6)=100 | | 3c2+4c+8=-6c | | 1/2(6x+10)=14 | | 6(×-2)+15=7x+3 | | −12m=−59.76 | | D(d-1)+4d=d(d-8)+5 | | M(4x+6)=80 | | 12+3x=3(4+x) | | 7p-8=4+3(p+8) | | 6.1g+2=1.1g+32 | | 9x-5=3x+67 | | M(4x+6)=60 | | j+16=34 | | 2(x+4)+5=51 | | 6m+.90=1.50m | | -4(x-5)+9x=-5 | | 2x+90+3×-20=180 | | x/9+12=20 |

Equations solver categories