If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1/6x+7/12=3+1/18x
We move all terms to the left:
1/6x+7/12-(3+1/18x)=0
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
Domain of the equation: 18x)!=0We add all the numbers together, and all the variables
x!=0/1
x!=0
x∈R
1/6x-(1/18x+3)+7/12=0
We get rid of parentheses
1/6x-1/18x-3+7/12=0
We calculate fractions
756x^2/1296x^2+216x/1296x^2+(-72x)/1296x^2-3=0
We multiply all the terms by the denominator
756x^2+216x+(-72x)-3*1296x^2=0
Wy multiply elements
756x^2-3888x^2+216x+(-72x)=0
We get rid of parentheses
756x^2-3888x^2+216x-72x=0
We add all the numbers together, and all the variables
-3132x^2+144x=0
a = -3132; b = 144; c = 0;
Δ = b2-4ac
Δ = 1442-4·(-3132)·0
Δ = 20736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{20736}=144$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(144)-144}{2*-3132}=\frac{-288}{-6264} =4/87 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(144)+144}{2*-3132}=\frac{0}{-6264} =0 $
| 3+7(b−10)=−45−(2−2b) | | 2(x+3)-8(x-5)=40 | | 1/2x+3/4=2+7/6x | | 2(q+3)−8(q−5)=40 | | 42-(7-7(c-8))=0 | | 1/4x-1/2=-1/2x-1/2 | | 4x^2-36x-77=0 | | —x/4+2=10 | | 4-8(9m-3)=2m+5 | | 42=7-7(c-8) | | 6x-2x-8=3x+5 | | 2/3x+4/5x+x=5700 | | 2(3y+2)+12=6(6y-4)-20 | | 4-(b+9)=9 | | 4+(b+9)=9 | | 9x+4=5x+129x-5x=12-44x=8X=8/4 | | 3(x+5)=5(x+3 | | 17=-5(3+w)=7 | | 2(5y+5)-9=4(2y-4)+14 | | 6(3x+1)=7x-5 | | x+11/6=x+1/5 | | Nx2=-24 | | 24-x=38 | | 5/2=x+2/11 | | 18x-34=-70 | | c^2-3c=27c+3c | | -40+2x=-20 | | 20+3x=92 | | 10x-22=12x | | x+3x2=x+2x3 | | 0.02(300)+0.08x=0.05(300+x) | | 2(q+5)-1=14-q |