1/6x+37=61-1/3x

Simple and best practice solution for 1/6x+37=61-1/3x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/6x+37=61-1/3x equation:



1/6x+37=61-1/3x
We move all terms to the left:
1/6x+37-(61-1/3x)=0
Domain of the equation: 6x!=0
x!=0/6
x!=0
x∈R
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
1/6x-(-1/3x+61)+37=0
We get rid of parentheses
1/6x+1/3x-61+37=0
We calculate fractions
3x/18x^2+6x/18x^2-61+37=0
We add all the numbers together, and all the variables
3x/18x^2+6x/18x^2-24=0
We multiply all the terms by the denominator
3x+6x-24*18x^2=0
We add all the numbers together, and all the variables
9x-24*18x^2=0
Wy multiply elements
-432x^2+9x=0
a = -432; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·(-432)·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{81}=9$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*-432}=\frac{-18}{-864} =1/48 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*-432}=\frac{0}{-864} =0 $

See similar equations:

| 4/7x=3/5+4x | | (4x+24)+(3x+19)=180 | | 2(3x-7)+19=6x+17 | | x+2x-5=-20 | | 9+10b=-9b-10 | | (4x+24)(3x+19)=180 | | 2/5n-9=7-3/5= | | 2X+4+2x=5X+1 | | 4x+24+3x+19=180 | | 3(4x−7)=135 | | 90=x+2x+30 | | 2x²+25=7 | | -3x+12x+6=7+30 | | 8x+10+6x+30=90 | | -1/3-1/2x=3/7 | | 10+4q=5q | | 3(2x1)=x+2 | | 90=x=2x+30 | | 5x-33=77 | | 9.3-0.4x=6.5 | | 24+8x=8(1+2x) | | 2x-25+91=180 | | 20=-4(4x+1)+2(-5+3x) | | 2j+3j=10 | | (x+20)+(2x-10)+(x/2+30)=180 | | 2(-5-7j=) | | 15-12x=-5x-6 | | x+5+x-13=90 | | 2/7-2/3=x/14 | | -18x=1/2x+5 | | 3(a+2)-1=0= | | x+1+x+2+2(x+1)=17 |

Equations solver categories